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Abstract

A dynamical system� a generalization of the Ising model� is de�ned on two di�
mensional lattices with cells in one of two states� The dynamical system uses simple
local rules to produce complex global behavior� Equivalence classes in the set of
di
erent rules for the system are demonstrated� and qualitative and numerical de�
scriptions are provided for many of the rules� Finally� a localized combinatorial
analysis is applied as a method of explaining the global behavior of particular rules�
This analysis is useful but ultimately demonstrates the problems involved in using
local information to predict global behavior�



Chapter �

The Ising Model

��� Complex Systems

A unifying theme in the study of complex systems is the emergence of complex

global behaviors from simple local interactions� The philosophical appeal of this

phenomenon is obvious � many people believe the universe is fundamentally gov�

erned by a relatively small number of simple physical laws� and yet at the same time

it supports an incredible array of complex phenomena� Even though the relationship

between local rules and global behavior is manifestly interesting and important� it

is not well understood�

There are many common models that capture some aspect of complexity arising

out of simplicity� Cellular automata and lattice gasses use local update rules to

create global behavior that models a variety of phenomena such as �uid dynamics�

epidemiology� and activation spreading� Lindenmayer systems� a type of locally

context�sensitive string rewriting system� have proven capable of simulating a variety

of morphogenetic phenomena� Neural networks exploit a network of simple local

interactions to simulate an increasingly complex set of cognitive phenomena�

All of these models share the same basic design of combining many local in�

teractions to produce global behavior� They also share a common problem � it

is very di�cult to explain exactly how the global behavior emerges from the local

rules� For many complex systems the only way to determine what will happen is to

implement the system directly� let it run and examine the outcome� Such simulation

is frequently easy to do� precisely because the rules for the model are relatively sim�

ple� But a complete analytic understanding of a complex system�s global behavior

is usually out of reach�

In this thesis a dynamical system is presented that uses a local update rule on a

lattice to produce complex global phenomena� The model that this system is based



	

on� the dynamical Ising model� has been solved in several of the simpler cases� The

generalization presented here produces a set of rules with widely di
erent behaviors�

First� a hierarchy of equivalence classes in the set of rules is demonstrated �chapter

��� The dynamics of representatives of the equivalence classes are then studied both

statistically and qualitatively �chapters � and �� Finally� a combinatorial analysis

of local dynamics is applied to partially explain the global dynamics of each rule

�chapter ��� This work represents one approach to studying complex systems�

��� The Ising Model

One complex system with a large body of analysis is the Ising model� a statisti�

cal mechanics system originally designed to simulate phase transitions in ferromag�

netism� Much has been written about the Ising model since its introduction in ��	

��Isi	��� a simple summary of the major results is available in �Cip���� and a more

thorough treatment is presented in �Tho�	��

The world of the Ising model is a collection of n cells � � ���� ��� � � � � �n�� Each

cell �i takes on a spin� a value either �� or ��� The cells are placed on a graph

with some sort of simple structure� the graph considered here is the common one

where the cells are at the intersections of a two dimensional square grid� and each

cell has four neighbors � one up� down� to the left� and to the right� Intuitively� this

corresponds to electrons on the surface of a two dimensional crystal with a regular

square structure�

Each cell can be in one of 	 states� �� or ��� Therefore� an Ising model with n

cells can be in a total of 	n possible con�gurations� or world states� The Ising rule

assigns to each possible world state an energy calculated by a function known as the

Hamiltonian� For the standard Ising rule the Hamiltonian is de�ned as follows�

H��� � �E
X
hi�ji

�i�j � J
X
i

�i

where
P

hi�ji is the sum over all cells �i and �j that are adjacent in the interaction

graph� and E and J are independent parameters for the system� E is the strength

of the ferromagnetic interaction of two spins� and J is the strength of an external



�

magnetic �eld as applied to individual spins� There are many di
erent systems

captured in variations on E and J � for this work� the case where J � � is most

relevant� The simpler Hamiltonian is then

H��� � �E
X
hi�ji

�i�j

When two spins �i and �j are equal �both �� or ���� their product �i�j � ���

and the pair contributes a negative value� �E� to the Hamiltonian� Pairs of opposite

spins have product �� and therefore add a positive value� �E� to the Hamiltonian�

The Hamiltonian is simply a sum of local pairwise spin interactions� But it has

a signi�cant global property� it is at a minimum only when every pair of adjacent

spins are equal� There are only two world states that satisfy this requirement� the

con�guration where every spin is �� and the con�guration where every spin is ���

The Ising rule� de�ned entirely in terms of local spin interactions� can test for a

global correlation of spins�

Most of the physics literature is concerned with the equilibrium aspects of the

Ising model� in particular the partition function�

Z���E� J� n� �
X

�i�f�g

e��H��i�

The partition function is the sum over all 	n possible con�gurations �i of an expo�

nential function of the Hamiltonian and � � ��kT � where k is Boltzmann�s constant

and T the temperature of the model�

A major portion of the work on the Ising model is concerned with analytically

solving the partition function� This function contains enough information to un�

derstand many of the equilibrium properties of the model� such as speci�c heat�

phase transitions� etc� Solving the partition function turns out to be quite di�cult�

an example of the problems encountered when applying analytical techniques to

complex systems� The most complete result to date is by Onsager� a solution for

the two dimensional square lattice in the case when J � � �presented in �Tho�	��

among others�� More recently� Jerrum and Sinclair have developed a probabilistic

algorithm to arbitrarily approximate the partition function in polynomial time for

any possible interaction graph ��JS�����



�

��� The Dynamical Ising Model

In addition to the equilibrium properties of the Ising model� there is also a simple

dynamical system that can be de�ned on world con�gurations� The Hamiltonian is

usually interpreted as an energy function� physical systems generally try to relax to

minimal energy� How might a particular world state relax to lowest energy under

the Ising rule�

�
�
� Spin Flip Dynamics

Consider the possible con�gurations of the world as states in a large Markov

chain �with 	n states�� If the world is in a particular state � at time t �identi�ed

with the world con�guration ��� then the Markov chain de�nes how it can move to

a new state �� at time t��� One common Markov chain de�ned for the Ising model

is to allow only single spin �ips� Two worlds are one spin �ip apart if they are the

same except for the spin at one cell in the world �ie� if the Hamming distance is

��� The Markov chain of spin �ip dynamics allows transitions only when exactly

one spin in � is �ipped� For example� here is a possible Ising world and a potential

transition to a new state� The spin �ip in the lower right middle reduces the energy

by 	E�

�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��

��

�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��

�
�
� Transition Probabilities

Not all single spin �ips are allowed with equal probability� The probability of

a particular spin �ip P������ is a function of �H� the change in the Hamiltonian

between �� and ��

�H � H�����H���





If two worlds � and �� are one spin �ip apart� then the probability of the transition

from � to �� is de�ned in terms of �H and the temperature T �

P��� ��� �

��
�

� �H � �
e��H�T

��e��H�T
�H � �

The spin �ip dynamics with this probability function is frequently referred to as the

Glauber dynamics �Gla���� Note that the probability of moving between two worlds

that are one spin �ip apart does not depend on the particular con�guration of spins

in the two worlds� just on �H� This fact greatly simpli�es the Markov chain� and

will be exploited fully to understand related models where the Hamiltonian is more

complicated�

The special case of this model that will be scrutinized most closely is the tem�

perature � case� T � �� For these models the transition probability is much simpler�

P��� ��� �

����
���

� �H � �

��	 �H � �

� �H � �

When the temperature is �� the only possible transitions are to con�gurations with

equal or lower energy�

The dynamics are easily simulated by the following algorithm ��BH�	�� p����

�� Pick a random cell �i in the state ��

	� Calculate �H for the transition from � to the con�guration �� � � with the

cell �i �ipped�

�� Calculate the probability of the transition �� �� based on �H�

�� Simulate the probability distribution for �H� If the transition occurs� replace

� with �� and repeat�

The e
ect of this Markov chain is to take any initial world state at high energy

and slowly transform it� one spin �ip at a time� to a more ordered state with lower

energy� This process is known as relaxation� and is essentially a gradient descent

method of �nding minima of the Hamiltonian� Appendix A presents an example



�

of the relaxation process at temperature �� showing snapshots of the world through

time �states �� and �� are represented as white and black squares��

A major result for this dynamical Ising model is that� for any con�guration on

a two�dimensional grid of in�nite size at temperature �� the energy of the worlds

generated by Markov chain is asymptotically E � t���� ��Lif�	�� �AC����� and in

particular limt�� E � �� And the only worlds of energy � are those whose spins

are all the same� Therefore� the dynamical process ultimately takes a random world

and turns it into a con�guration where every cell has spin �� or ���

�
�
� Finite Size E�ects

The asymptotic behavior of the dynamical Ising system is stated for worlds of

in�nite size� When simulating this and related dynamical systems it is impossible

to represent an in�nite world� so in practice one is constrained to considering worlds

of �nite size� The hope is that properties derived for �nite systems will generalize

to in�nite worlds at limn���

In the two dimensional models presented here the �nite size approximation will

be the usual cyclic boundary conditions� connecting the left edge of the world to

the right edge and the top to the bottom� producing a torus� In some cases this

�nite system exhibits behavior not present in the in�nite limit� for example� there

are instances of the Ising dynamics on �nite size worlds where the energy does not

go to � �see chapter �� If the �nite system does something that does not occur in

the in�nite world� that behavior will be clearly identi�ed as a �nite size e�ect�

��� Summary

Ising rule dynamics are de�ned simply and entirely locally� A function� the

Hamiltonian� associates to any particular con�guration an energy calculated by

summing over local interactions of the individual cells� The dynamical process allows

motions between nearby con�gurations with a certain probability that depends on

the change in the Hamiltonian � in the temperature � case� when �H � ��



�

This process is governed entirely by the interaction of physically adjacent spins�

And yet� at temperature � the end result is a global organization of spins across

the entire world� not just correlation between adjacent spins� The dynamical Ising

model itself is fairly simple� but it suggests a host of related models that� while still

de�ned in terms of a simple local interaction� result in a variety of complicated and

interesting global behaviors�



�



Chapter �

The �x� Model

��� The Ising Model Reconsidered

The Hamiltonian for the standard Ising rule with no external magnetic �eld was

de�ned as a sum over all adjacent pairs of spins�

H��� � �E
X
hi�ji

�i�j

While this version of the Ising model is physically motivated� the Ising model can also

be considered as a purely combinatorial system� independent of an interpretation as

ferromagnetically interacting electrons�

Another way to think of the Ising rule is to consider it as a sum over all �x	

blocks of spins� in a two dimensional square grid� two adjacent cells are always the

members of a �x	 block� oriented either horizontally or vertically� There are four

possible �x	 blocks�
��
��

��
��

��
��

��
��

Let S denote the set of blocks whose cells have equal spin �both �� or ���� and

D be the set of blocks whose cells have opposite spin� For the Ising rule� members

of S contribute �E to the Hamiltonian� whereas members of D contribute �E�

Therefore� the Hamiltonian can also be expressed as the sum over all blocks in S

and all blocks in D�

H��� �
X
S

�E �
X
D

E

In the future� blocks will also be called �neighborhoods�� borrowing the term from

cellular automata literature�

Because the Hamiltonian is stated in terms of �same� and �di
erent� blocks�

instead of products of spins� there is no need for the values of the spins �i themselves

to have any particular meaning� Instead of a world of cells of spin ��� the model can

be stated as a collection of cells in one of two arbitrary states� state � and state ��



��

There are still four possible �x	 neighborhoods� two the same and two di
erent� and

the Hamiltonian for the Ising rule can still be stated as the sum over neighborhoods

in the sets S and D�

To further simplify the Hamiltonian it is helpful to eliminate negative values

from the calculation� As stated� there are two energies in the Hamiltonian� �E� for

those neighborhoods where the two states are equal� and �E� for those where the

two states are di
erent� Relabel these ES and ED�

H��� �
X
S

ES �
X
D

ED

When ES � �E and ED � �E� the Hamiltonian is the same as the standard

Ising rule� When ES � � and ED � �� the function is essentially the same as the

standard Ising rule except that the Hamiltonian is always positive� The minimum

of this new Hamiltonian is H � �� but still occurs only when all cells in the world

are the same state� �H will still be the same as the standard Ising rule� up to

a constant multiplier� The dynamical process is not signi�cantly altered by this

restatement�

��� �x� Rules

Having stated the Ising rule in terms of �x	 neighborhoods� a natural general�

ization is to consider models where the Hamiltonian is de�ned as sums over larger

neighborhoods� The Hamiltonian for 	x	 neighborhoods is considerably more com�

plicated than that for �x	 neighborhoods� Each of the four cells in a neighborhood

can be either � or �� resulting in 	� � �� di
erent 	x	 neighborhoods� Give these ��

neighborhoods the arbitrary names n�� n�� � � � n��� and assign to each neighborhood

an energy Eni�

Let N be the set of all 	x	 neighborhoods in the world� Note that neighbor�

hoods overlap and that every cell is a member of � di
erent neighborhoods� The

Hamiltonian de�ned on 	x	 blocks is�

H��� �
X
N�n�

En� �
X
N�n�

En� � � � ��
X

N�n��

En��



��

There is no particular physical motivation for the generalization to 	x	 blocks�

A physical system that implemented this Hamiltonian would be quite unlike the

ferromagnets that the Ising model simulates� Even allowing for interaction between

groups of four nearby electrons� the Hamiltonian for a general 	x	 rule is not the

sum over simple four�point products� For example� the product of spins in the 	x	

blocks ����
���� and ����

�� �� are both ��� they would be given the same energy by a

Hamiltonian de�ned as a product of four spins� But the general 	x	 system can

assign di
erent energies to the corresponding neighborhoods � �
� � and � �

� � �

The main motivation for studying this system is that it is a natural extension

of the Ising rule� with enough room in the space of possible rules to have many

di
erent dynamical behaviors�

��� Rotational Symmetry

One feature of the general 	x	 model is that arbitrary 	x	 rules are capable of

distinguishing a global property of the world� left from right� up from down� In

particular� a rule can assign a di
erent energy to � �
� � than to � �

� � � this amounts to

global information about which direction the  top� of the world is� Requiring that a

rule assign the same energy to all rotations of a neighborhood eliminates this global

information�

De�nition �
� Rotationally Symmetric Rule� A �x� rule is rotationally sym�

metric if it assigns the same energy to all rotations of a neighborhood�

There are six rotationally distinct 	x	 neighborhoods� These are�

� � � �
� � � � � �

� � S � � �
� �

� � � �
� � � � � �

� � C � � �
� �

The names are mnemonic� A number indicates how many �s there are in the neigh�

borhood� There are two distinct neighborhoods with two �s� so they are given the

names S for  stripe� and C for  checkerboard��

A rotationally symmetric 	x	 rule assigns an energy to each of the six rotational

classes of neighborhoods� These energies are named E�� E�� ES� EC� E�� and E��



�	

Each neighborhood in the world is one of the six rotational types� Let S� be the set

of all neighborhoods that are of type �� S� be all neighborhoods of type �� etc� The

rotationally symmetric rules have the following Hamiltonian�

H �
X
S�

E� �
X
S�

E� �
X
SS

ES �
X
SC

EC �
X
S�

E� �
X
S�

E�

The things being summed in the Hamiltonian are simply constants� For any

neighborhood n�
P

Sn En � En

P
Sn �� and the sum

P
Sn � is just a count of all

neighborhoods of type n� As this sum is the major feature being counted in the

Hamiltonian� it will be abbreviated Nn for any particular type of neighborhood n�

Ie� N� � jfneighborhoods of type �gj�

De�nition �
� Hamiltonian for Rotationally Symmetric �x� Rules�

H��� � E�N� � E�N� � ESNS � ECNC � E�N� � E�N�

The Ising model is one rotationally symmetric rule� The Ising rule gives energy

� to �x	 blocks of equal spin� and energy � to �x	 blocks of opposite spin� In 	x	

terms� every pair of cells in the neighborhoods � and � are equal� therefore� in the

	x	 Ising rule � and � have energy �� �� S� and � each have two pairs of cells that are

di
erent� these 	x	 neighborhoods have energy 	� Finally� in C every adjacent pair

of cells is opposite� yielding energy �� Assigning E� � E� � �� E� � ES � E� � 	�

and EC � �� the Hamiltonian for this 	x	 rule is identical to the Ising rule on �x	

rules� up to a constant multiplier�

��� A Simpli�cation

The set of possible rotationally symmetric 	x	 rules is fairly large� each of the

six energies can be any real number� yielding a six dimensional space of possible

rules� To further simplify the model� the only rules considered in the future will

be those where each En is in the set f�� �g� These energies will be interpreted as

 allowing� or  disallowing� certain neighborhoods�



��

De�nition �
� Allowed and Disallowed� Neighborhoods with energy � are called

allowed neighborhoods� Disallowed neighborhoods have energy ��

The Ising rule cannot be exactly expressed under this restriction� For the Ising

rule on 	x	 neighborhoods� C has twice as many opposite pairs as �� and thus

EC � 	E�� But under the restriction that all neighborhoods have only energy � or

�� EC cannot be twice E�� However� the rule where EC � E� � � yields dynamics

almost identical to the Ising rule �neighborhoods of type C do not seem to play a

crucial role�� In the future� when the  Ising rule� is mentioned it will refer to this

not�quite�exact representation�

In addition to simplifying the model� the restriction of energies to f�� �g is mo�

tivated by related work on classes of two�dimensional string languages� Computer

scientists frequently study sequences of one�dimensional symbols � sets of these

strings are called �languages� �HU���� One subset of the regular languages on one

dimensional strings are the ��nite complement� languages� In brief� a �nite com�

plement language is speci�ed by a �nite set of forbidden substrings� Every string

that does not contain a substring in the forbidden set is in the �nite complement

language�

The generalization of �nite complement languages to two dimensional strings is

called �Local Lattice Languages� �LLLs�� those languages which can be speci�ed

by forbidding certain �nite blocks �LMN���� Building a recognition machine for any

particular LLL is easy � simply scan each local block to see if it is on the list of

forbidden patterns�

The Hamiltonian for 	x	 rules is a machine which determines whether a world

is in a given LLL� Blocks which are permitted by the LLL rule are given energy �

� allowed�� in the Hamiltonian recognition machine� and those which are forbidden

are given energy � � disallowed��� The strings in the LLL are then exactly the set of

world con�gurations � such that H��� � �� the ground states of the Hamiltonian�

The Hamiltonian is a recognition machine for LLLs� the dynamical spin��ip

process suggests a way to create strings that match a certain LLL rule� Simply

apply the dynamical process to a random initial world con�guration� If the system



��

relaxes to energy �� a string in the LLL has been generated� It will be seen that

certain rules relax to energy � on random input and others do not� An interesting

question is to what degree the outcome is predictable by simply looking at the LLL�

This question is addressed in chapter ��

��� Rule Space

The remainder of this thesis will be concerned with the dynamics of rotationally

symmetric 	x	 rules whose energies are constrained to the set f�� �g� There are six

di
erent neighborhoods� and thus 		 � �� di
erent rules in this set� Each rule will

be referred to by its canonical number� a number in ��� ����

De�nition �
� Canonical Rule Numbering� The canonical number N of a ro�

tationally symmetric rule is

N � E�	
� � E�	

� � ES	� � EC	
 � E�	
� � E�	

�

This numbering is simply a binary coding of the energies associated with each

neighborhood� Rules will be written in boldface� �Rule ���� Frequently� for ease

of reading� the allowed neighborhoods will be listed in parenthesis next to the rule�

�Rule �� ������ A complete dictionary of all rules and their corresponding allowed

and disallowed neighborhoods is in Appendix B�

Each rule R de�nes a Hamiltonian� The Hamiltonian for R applied to a world

con�guration � will be notated HR����

��� The Dynamical �x� Model

The dynamical system for the Ising rule was de�ned in terms of spin �ips and

�H� Therefore� it generalizes naturally to 	x	 rules� At each time step a cell is

picked in the world� If �ipping its value would lower the Hamiltonian for the world

��H � ��� then that �ip is performed� At zero temperature� if �ipping the cell

would not change the energy ��H � ��� then the �ip happens with probability ��	�

Flips to high energy states ��H � �� do not happen�



�

The general result of this dynamical system is frequently surprising and aesthet�

ically pleasing� The Ising rule has only two ground states and a simple dynamical

behavior � shrinking domains� Any particular 	x	 rule might have a large set of

interesting ground states as well as a possibly complex dynamical process� Chapter

 gives a qualitative description of several of the rotationally symmetric rules� In

addition� there are two example runs in the form of �ipbooks on the corners of the

pages of this thesis� Left side pages are Rule ��� right side pages are Rule ��� The

time between each frame is not a constant� but varies according to how fast the rule

acts�

As in the Ising rule� the Hamiltonian is de�ned by local interactions� Therefore�

�H can again be calculated locally for any particular spin �ip� Every cell in the

world belongs to exactly four neighborhoods� Therefore� �H for any particular spin

�ip depends only on �H for the four 	x	 neighborhoods the chosen cell belongs to

� a local �x� block�

This trick considerably shortens the amount of computation required to simulate

the dynamical process� It also serves as a reminder that this system is de�ned locally�

for any potential spin �ip� only local information is necessary to decide whether to

perform that �ip� However the resulting dynamical behavior of repeated spin �ips is

a global phenomenon� As in the Ising model� the dynamical system might ultimately

result in a world with correlations between far�away cells�



��



Chapter �

Symmetries and Equivalent Rules

��� Introduction

Of the �� rules in the set of rotationally symmetric 	x	 rules� not every rule

produces a unique dynamical behavior� For example� Rule �� ��� is  equivalent�� in

an important sense� to Rule �� ���� These two rules have exactly opposite ground

states � Rule �� allows only solid �elds of �� whereas Rule �� allows only solid

�elds of �� The  meanings� of � and � are entirely arbitrary � intuitively� if � and

� have no special meaning� then a con�guration of all � is not much di
erent from

a con�guration of all ��

For both Rule �� and Rule �� the Hamiltonian is simply the sum of all neigh�

borhoods that are not exactly a block of four cells all in the same state � the only

di
erence is which state is  correct�� The dynamical system corresponding to these

rules is identical except for the role of � and ��

Formalizing this concept� it will be seen that Rule �� and Rule �� are equivalent�

at least when considered under the appropriate transformation on the world� Four

di
erent transformations on the world will be de�ned� and it will be shown that

under these transformations the set of �� rules can be broken up into �	 equivalence

classes� each rule being a member of one of these classes�

��� Parity Transformation

First� formalize the notion of �two con�gurations are the same except for the

roles of � and ���

De�nition �
� Parity Transformation on a World� Application of the parity

transformation P on a world con�guration �	 P ���	 results in a new con�guration

�� which is the con�guration � with all �s turned into �s and all �s turned into �s�



��

De�nition �
� Parity Equivalence of Worlds� Two con�gurations � and ��

are parity equivalent if P ��� � ���

Parity�equivalent con�gurations di
er only in the roles of � and �� As the labels �

and � are arbitrary� without any external meaning� this di
erence is not signi�cant�

� � � �
� � � �
� � � �
� � � �

is parity equivalent to
� � � �
� � � �
� � � �
� � � �

Because the evaluation of the Hamiltonian is de�ned in terms of 	x	 neigh�

borhoods� it is important to consider the action of the parity transformation just

on those 	x	 neighborhoods� P turns every neighborhood into its complement�

P ��� � �� P ��� � �� P �S� � S� P �C� � C� P ��� � �� and P ��� � �� The action

of the parity transform will be notated�

� �� �
� �� �

which is taken to mean �� and � switch roles� � and � switch roles� S and C remain

�xed��

Now that the parity transformation is de�ned for worlds� it is natural to ask

what rule R�� when applied to the transformed con�guration �� � P ���� yields the

same Hamiltonian as a rule R applied to ��

Note that every � in � is transformed into a corresponding � in ��� This im�

plies that the number of � neighborhoods in � is the same as the number of �

neighborhoods in ���

N� � N �
�

�����

Similarly�

N� � N �
�

NS � N �
S

NC � N �
C

N� � N �
�

N� � N �
�

By choosing R� with the appropriate energies E�� an R� can be constructed such

that HR����� � HR����



��

De�ne R� as follows� let E�
�

� E�� E
�
�

� E�� E
�
S

� ES� E�
C

� EC� E�
�

� E�� and

E�
�

� E�� Then�

HR����� � E�
�
N �
�

� E�
�
N �
�

� E�
S
N �
S

� E�
C
N �
C

� E�
�
N �
�

� E�
�
N �
�

� E�N
�
�

� E�N
�
�

� ESN
�
S

� ECN
�
C

� E�N
�
�

� E�N
�
�

� E�N� � E�N� � ESNS � ECNC � E�N� � E�N�

� HR���

Thus for a rule R and an arbitrary con�guration �� there is a rule R� that yields

the same Hamiltonian when applied to the transformed con�guration ��� The energy

assignments to each neighborhood simply follows the action of the transformation

on those neighborhoods�

De�nition �
� Parity Transformation on a Rule� The application of P on a

rule R	 P �R�	 yields a new rule R�� R� is derived from R by setting E�
�

� E�	

E�
�

� E�	 E
�
S

� ES	 E
�
C

� EC	 E
�
�

� E�	 and E
�
�

� E��

De�nition �
� Parity Equivalence of Rules� Two rules R and R� are parity

equivalent if P �R� � R��

A rule R on the con�guration � has the same Hamiltonian as the parity equiv�

alent rule R� on the parity equivalent con�guration ��� Therefore� in the dynamical

system for any particular spin �ip �HR � �HR�� The transition probabilities do

not change� and so the the dynamical processes are the same�

De�nition �
� Parity Symmetric Rules� A rule R is parity symmetric if it is

parity equivalent to itself	 ie� P �R� � R�

Parity symmetric rules are those rules that are �xed by the parity transforma�

tion P � much as rotationally symmetric rules are those that are �xed under rotation�

Parity symmetric rules have the same Hamiltonian on � and P ���� They are inca�

pable of distinguishing � from �� the parity of the world� and therefore they cannot

bias the dynamical system towards a predominance of either state� One example of



	�

a parity symmetric rule is the 	x	 version of the Ising rule� Rule �� ����� under

the Ising rule� the con�guration where every cell is a � is just as probable as the

con�guration of all ��

��� General World Transforms

The parity transformation simply �ips every bit in the world state� This is

equivalent to applying the function �xor �� to every �x� block in the world� One

generalization of this idea is to apply a given 	x	 con�guration as an xor pattern to

all 	x	 blocks in the world� It will turn out that certain 	x	 xor patterns suggest

other equivalences in the rule table�

De�nition �
� General �x� Transformations on Worlds� T ���	 the action

of a transformation T � a b
c d on a world con�guration �	 is de�ned as the appli�

cation of T as an xor pattern to consecutive �x� blocks of �� This action only makes

sense when applied to worlds of even size�

Note that the transformation T does not operate on every 	x	 block� as that

would result would result in T being applied to each cell in the world four times �

it should only be applied to each cell once�

De�nition �
� Canonical Transformations� The four canonical transforma�

tions T�	 TC	 TS	 and T� are�

T� � � �
� �

TC � � �
� �

TS � � �
� �

T� � � �
� �

T� is simply P � the parity transformation� stated in terms of 	x	 blocks� TC takes

a con�guration and inverts every other cell� like the black squares on a checkerboard�



	�

� � � �
� � � �
� � � �
� � � �

��
� � � �
� � � �
� � � �
� � � �

Figure ���� the action of TS

TS inverts every other line� and T� inverts one cell out of every group of four� Figure

��� is an example of TS applied to a small con�guration�

Of the sixteen possible 	x	 neighborhoods� only four have been named as trans�

formations� Rotations of these blocks are not listed as they do not produce signif�

icantly di
erent transformations� The two other essential neighborhoods� � and �

are also not in this list� T� is the null transformation� and T� is equivalent to T�

�T� � T� � T�� and it will turn out that T� only applies when T� does��

The action of these various transformations on world con�gurations in terms of

	x	 neighborhoods can be a bit more complicated than the parity transformation�

Under the parity transformation T�� there was a simple swapping of neighborhood

types�

� �� �
� �� �

The simple action of T� is largely because the neighborhood � itself is rota�

tionally symmetric� When applying one of the other transformations to a given

neighborhood� however� one must consider the application of that transformation to

all rotations of the neighborhood� For example� consider TS applied to all rotations

of S�

T�� � �� � � � � �
� � xor � �

� � � � �
� � ���

T�� � �� � � � � �
� � xor � �

� � � � �
� � �C�

T�� � �� � � � � �
� � xor � �

� � � � �
� � �C�

T�� � �� � � � � �
� � xor � �

� � � � �
� � ���

Whereas T� turned all S into S� TS might turn a S into a �� �� or C� Conversely�

under TS all �� �� and C are transformed into S� In other words� �� �� and C get



		

swapped as a group with S� This e
ect is denoted

���C� �� S

A complete list of the application of each type of transformation is as follows�

T� � �� �
� �� �

TC ���� �� C
���� �� ����

TS ���C� �� S
���� �� ����

T� ���SC� �� ����

Equation ��� translated the number of neighborhoods Nn to their transformed

neighborhoods N �
n

for T�� The analogous identities for these other transformations

is more complex� For example� consider again the action of TS �

���C� �� S

Because each S in � is mapped to exactly one of ���C� in ��� and every �� �� and

C in � is mapped to S in ��� the analogous identities for TS are

N �
S

� N� � N� � NC

N �
�

� N �
�

� N �
C

� NS

Similarly� TS also performs

���� �� ����

There is a ��� correspondence between ���� in � and ���� in ��� so

N� � N� � N �
�

� N �
�

In general� under any transform T there will be an exchange of groups of neigh�

borhoods� This exchange implies an equivalence of the number of neighborhoods in

the mapping�



	�

��� Equivalence of Rules under General World Transforms

Knowing the action of a general transform T on each of the possible neighbor�

hoods suggests that it should be possible to �nd the rule R� such that HR��� �

HR������ simply make sure the energies assigned to each neighborhood follow the

neighborhood mappings� Unfortunately� the neighborhood mappings for arbitrary

transforms are not as simple as for the parity transformation�

Consider trying to naively �nd the rule equivalent to Rule �� ���S� under TS�

TS maps � to S� so E�
S

� E� � �� However� TS also maps � to S� so E�
S

� E� � ��

and it maps C to S� so E�
S

� EC � �� Therefore� E�
S

� �� but E�
S

� �� the rule

equivalent to Rule �� would have to allow some rotations of S but disallow others�

resulting in a non�rotationally symmetric rule�

If� however� we only try to �nd TS equivalences to rules where E� � EC � E��

there is no problem� E�
S

can simply be set equal to E� � EC � E�� Similarly�

TS performs S � ���C�� so E�
�

� E�
�

� E�
C

� ES� TS also does ���� �� ����

requiring E� � E� in order for TS to result in a rotationally symmetric rule� In

other words�

If� in rule R� E� � EC � E� and E� � E�� then there is a rule R� with E �
�

� ES�

E�
�

� E�� E�
S

� E�� E�
C

� ES� E�
�

� E�� E�
�

� ES such that HR��TS���� � HR����

The proof is as follows�

HR��TS���� � E�
�
N �
�

� E�
�
N �
�

� E�
S
N �
S

� E�
C
N �
C

� E�
�
N �
�

� E�
�
N �
�

� ESN
�
�

� E�N
�
�

� E�N
�
S

� ESN
�
C

� E�N
�
�

� ESN
�
�

� E��N
�
S
� � E��N

�
�

� N �
�
� � ES�N �

�
� N �

C
� N �

�
�

� E��N� � NC � N�� � E��N� � N�� � ES�NS�

� E�N� � E�N� � ESNS � E�NC � E�N� � E�N�

� E�N� � E�N� � ESNS � ECNC � E�N� � E�N�

� HR���

This idea can be generalized to any of the four canonical transformations�
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De�nition �
� Transformation on a Rule� The result of a transformation T

applied to a rule R is the rule R� with the energies exchanged along the lines suggested

by the action of T on �x� neighborhoods� This transformation is only de�ned if the

energies of R corresponding to neighborhoods that are mapped as groups under T

are equal�

The requirement that for a transformation to be de�ned groups of transformed

neighborhoods must have the same energy insures that the new rule assigns the

same energy to every rotation of a neighborhood� Without this requirement� a

transformation applied to a rule could result in a non�rotationally symmetric rule�

The proof given above for the equivalence of the Hamiltonians for R and TS�R�

generalizes to proofs for all four transformations� This generalization is conceptually

trivial but the notation required is complex enough to obscure the meaning of the

theorem�

The de�nitions of parity equivalence and parity symmetry can now also be gen�

eralized to arbitrary transformations�

De�nition �
� Equivalence under a Transform T � Two rules R and R� are

equivalent under T if T �R� � R��

Two rules that are equivalent under a transform have the same Hamiltonian on

appropriately transformed world con�gurations� Therefore� �H for any particular

spin �ip on the con�guration and its transformation will be the same� and so the

two equivalent rules generate the same dynamical process� Any predictions a theory

makes about a particular rule R will apply to any rule R� that is equivalent to R

under any transformation�

De�nition �
�� Symmetric under T � A rule R is symmetric under a trans�

form T if T �R� 
 R�

Rules that are equivalent to themselves under certain transformations �or alter�

nately� ��xed by� or �invariant under� a transformation� will play a special role in

the theory�



	

��� Hierarchy of Transformations

The requirement that certain transformations are only well de�ned on a restricted

set of rules might make the whole notion of equivalences under di
erent transforms

seem a bit suspicious� Instead� it reveals a natural hierarchy in the table of possible

	x	 rules�

Consider the conditions necessary for the TC transformation to be de�ned for a

particular rule� E� � E� and E� � E�� Which rules �t those requirements� Exactly

those rules which are symmetric under T�!

Similarly� TS is only de�ned on those rules that are symmetric under TC� and

T� applies only to those rules that are symmetric under TS� The transformations

have a hierarchy of application� a transformation is only de�ned for a rule that is

symmetric under all of the lower transformations�

T� �� TC �� TS �� T�

There are exactly two rules that are symmetric under all four transformations�

Rule � ���SC��� �everything allowed� and Rule �� �� �nothing allowed�� These

trivial rules correspond to the Hamiltonian

H � E�N� � N� � NS � NC � N� � N�� � En�

where E can have either the value � �Rule �� or � �Rule ���� Because the Hamilto�

nian is a constant� not dependent on the world state� �H � � for all possible spin

�ips and the dynamical process is completely random� For future purposes� Rule �

and Rule �� will be considered equivalent�

The top level of the hierarchy of transformations is T�� Rules that are symmetric

under all transforms except T� can only distinguish the group ���SC� from �����

therefore� the Hamiltonian is�

H � E��SC�N� � N� � NS � NC� � E���N� � N��

There are two variables in the Hamiltonian� E��SC and E��� and so there are r

rules that are symmetric under T�� TC� and TS but not T�� Of those four rules� the



	�

two rules where E��SC � E�� are symmetric under T� and have been seen before�

Rule � and Rule ��� The other two rules are new� those where E��SC 	� E��� These

are Rule �� ��SC�� and Rule �� ����� equivalent to each other under T�� By

breaking the T� symmetry� the number of total rules has doubled from two to four�

and the number of truly unique rules has doubled from one to two�

The Hamiltonians for the rules where the �rst asymmetry is in TS� TC� and T�

are as follows�

TS � H��� � E��C�N� � N� � NC� � ESNS � E���N� � N��

TC � H��� � E���N� � N�� � ECNC � ESNS � E���N� � N��

T� � H��� � E�N� � E�N� � ESNS � ECNC � E�N� � E�N�

Each time a symmetry is broken extra terms are added to the Hamiltonian�

increasing the number of rules in that symmetry class� Breaking T�� TS� and TC

symmetries both add one extra term� doubling the total number of rules each time�

Breaking T� symmetry adds two terms� one distinguishing � from � and the other

distinguishing � from ��

Each time a symmetry is broken the resulting system can then distinguish the

neighborhoods associated with that transformation� When T� symmetry is broken�

the rules can distinguish ���� from ���SC�� Breaking TS symmetry allows the

system to count S as distinct from other neighborhoods� breaking TC singles out C�

and breaking T� distinguishes between � and �� as well as � and ��

��� Summary

For every rule R except Rule � and Rule �� there is exactly one transformation

under which R is equivalent to some other distinct rule� For example� if R is not

symmetric under T�� then R� � T��R� is distinct from R� equivalent to it under

T�� and equivalent to no rules under higher transformations �as they do not apply��

This follows similarly for the other transformations� Therefore� T�� TC� TS� and T�

induce equivalence classes on the set of �� rules� Each equivalence class has two

members� the two rules that are equivalent under a particular transformation� In
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the future� equivalent rules will be written together� Rule �� is equivalent to Rule

�� under TC� so they will be referred to as a pair as �Rule ��	����

With the convention that Rule � is equivalent to Rule ��� every 	x	 rule is equiv�

alent to exactly one other distinct 	x	 rule� The number of distinct rules has been

reduced from �� to �	� Furthermore� the rules have now been placed in a hierarchy

of complexity� rules that are symmetric under more transformations have simpler

Hamiltonians� Appendix B contains a complete dictionary of the �� rotationally

symmetric rules� along with a listing of the action of various transformations on

those rules�

The four world transformations have revealed a hidden structure in the rule

table� one that cuts the number of rules that need to be studied in half� What

remains to be done is to understand the global behavior of these rules and to try to

explain how that behavior arises out of the local rule itself�



	�



Chapter �

Statistical Analysis

One common analysis performed on these types of dynamical systems is empir�

ically calculating the behavior of energy as a function of time� The 	x	 rules are

functions that de�ne the energy of a con�guration� E��� � HR���� Ideally one

could solve the system itself and analytically �nd a solution for the expectation of

energy as a function of time� E�E� � f�t�� Unfortunately� this sort of solution is

di�cult to �nd for any particular rule�

The basic dynamical Ising model in two dimensions with spin �ip dynamics

�essentially Rule ��	��� has been solved� largely by exploiting the observation that

the Ising rule is driven by the curvature of the boundaries between regions ��Lif�	��

�AC����� But many of the rules in these systems are not like the Ising rule in being

curvature driven �as will be shown in chapter �� and so it does not seem likely that

those methods would generalize to all of the 	x	 rules� However� simulation can be

used to measure the behavior of energy as a function of time�

One common class of models are those whose energy is asymptotically some

power of t� E � t�� For example� the Ising rule goes as E � t���� �AC���� There

is a belief ��Bin���� �GSA���� �SB���� �RG���� etc�� that many dynamical systems

fall into one of only a few universality classes� that there are only a few possible

values of alpha� independent of the speci�cs of the particular dynamical process�

If all models were members of only a few universality classes� it would be a very

deep property about these kind of dynamical systems� The best known universality

classes are � � ���	 and � � ����� More recently� evidence has been found for an

� � ���� universality class �Mou�� �LC��

It will be shown that most of the seven nontrivial parity symmetric 	x	 rules are

probably in the best known universality class� � � ���	� One rule is asymptotically

faster than any power of t� and another seems to be in a new universality class�

� 
 ����
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��� Statistical Behavior of the Parity Symmetric �x� Rules

At temperature � there is a clear division in the various 	x	 rules between those

which create systems that asymptotically go to energy � as time gets large� and those

that freeze at some higher energy� Rules that result in dynamics that freeze at high

energy ��frustrated rules�� are not as easy to study by simulation� Because they do

not go all the way down to energy � it is more di�cult to de�ne their asymptotic

behavior� Also� it is usually more interesting to consider frustrated rules in positive

temperature contexts� as there the system can surmount the energy barriers that

freeze the system at temperature �� But at T � � the equilibrium energy is not

known� so it is not clear when any relaxation process is completed� Because of these

complications� the statistical behavior of rules that do not go to energy � will not

be considered� in the set of seven non�trivial parity symmetric rules� these are Rule

��	�� and Rule ��	���

Of the �ve remaining rules� four of them have energy that is asymptotically

a power of t� The one exception is Rule �	��� which converges extremely quickly�

probably E � e�t� The dynamics of Rule �	�� are so disorganized as to be relatively

uninteresting� it will not be considered further� The remaining parity symmetric

rules� Rule �	��� Rule ��	��� Rule ��	��� and Rule ��	��� all seem to �t E � t��

Note that E � t� � log�E� � � log�t�� rules that are a power of t will be linear

in a log�log plot� The four rules listed above all appear convincingly linear on a

log�log scale� Figure ���� for instance� is a representative graph of log�E� vs� log�t�

for Rule �	���

��� Estimation of Error

Given energy vs� time data collected over many trials of a particular run� it would

seem to be a simple matter to read the exponent from the data� simply average the

independent energy measurements together� �t a straight line to log�E� vs� log�t��

and read the slope� Unfortunately� several potential complications in the data must

be accounted for� Finite size e
ects yield incorrect data for predicting the behavior
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Figure ���� Rule �	��� 	�x	� world� average of 	�� trials�

of the model at the in�nite size limit� and using a small number of random samplings

yields uncertainty in the calculated exponent� These problems must be accounted

for�

�
�
� Uncertainty

For any particular simulation of the system� the measured energy has a certain

error� the deviation from the  true curve�� Estimating the uncertainty of the slope

from the simple log�log �t of averaged data is not possible� the error in energy

measurements tends to be correlated in time� making the standard estimate of error

in the linear �t too optimistic� In general� the error distribution for each rule seems

to be unique and di�cult to model� Rule �	�� at size 	�x	� has been chosen

as an example of various ways to estimate the uncertainty of the exponent� While

the speci�c results of this error analysis might not apply to all rules� the general

methodology does�

By averaging together 	�� trials of Rule �	�� at world size 	�x	� and reading

the slope of the log�log plot� the exponent is calculated to be ����		 �Figure �����

One simple way to get a feel for the uncertainty of that �gure is to calculate expo�
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Figure ��	� Histogram of exponents for 	�� trials of Rule �	��� size 	�x	�

nents for each of the individual trials and see how the distribution falls� Figure ��	 is

a histogram of the exponents calculated for each of the 	�� individual runs� Happily�

the distribution tends to cluster around the mean� with a slight asymmetry towards

lower exponents� The mean of this distribution is ����		� the same exponent as

calculated by the average of the runs� with a standard deviation of �������

This method estimates the uncertainty of the exponent calculated for one trial�

Resampling provides a method for estimating the uncertainty in the exponent cal�

culated by averaging together a large number of trials� The most straightforward

way to estimate this uncertainty would be to do a large number of experiments�

each with 	�� trials� and look at the distribution of the exponents calculated from

the average�

Unfortunately that many trials would take too long to perform� Instead� boot�

strapping can be employed to produce many datasets of 	�� trials averaged together

�ET���� Bootstrapping is implemented by choosing 	�� trials randomly� with re�

placement� out of the initial pool of 	��� �Note that replacement implies some trials

will be duplicated in the resampling�� Each bootstrap sample yields a new dataset of

size 	�� from which to calculate an exponent� Perform this procedure many times�
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Figure ���� Histogram of exponents for ��� bootstrap samples of Rule �	��� size
	�x	�

and the result is a distribution of exponents of 	�� trials averaged together�

Figure ��� is a histogram of the exponents calculated on the same dataset for

��� di
erent bootstrap samples of the 	�� runs� The exponents here are tightly

clustered around the mean ����		� with standard deviation �������� Bootstrapping

shows that the exponent calculated for Rule �	�� by averaging together 	�� trials

is accurate to at least two signi�cant �gures�

�
�
� Finite Size E�ects

These dynamical processes are ideally taking place on an in�nite plane� But

numeric simulation is limited to simulating the rules on a �nite lattice� some ac�

counting must be made for the e
ect of world size on the calculations� Two distinct

�nite size e
ects can occur� Subtle errors can be introduced as a general e
ect of

�nite size� these will show up as a general trend in the calculated exponent at dif�

ferent sizes� In addition� the toroidal world topology can also introduce entirely new

phenomena speci�c to �nite size worlds �a speci�c example of this in the Ising rule

is presented in the next chapter�� To compensate for this� trials that exhibit �nite
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Figure ���� Exponent as a function of world size for Rule �	��

size�speci�c behavior should be thrown out�

�
�
�
� Exponent as a Function of World Size

For Rule �	�� the size of the world has a de�nite in�uence on the calculated

exponent� Figure ��� presents the calculated exponents for Rule �	�� at various

world sizes �each exponent is calculated from the average of 	�� runs� except the

��	�x��	� world which is only ��� runs��

As the world size increases the change between exponents decreases� indicating

that calculating at larger world sizes is probably helpful� Perhaps not much bene�t

would be derived from simulating beyond size ��	�x��	�� a calculation of the expo�

nent at 	���x	��� would help verify this claim� but the computer time required to

do such a calculation is prohibitive �but see Appendix C��

�
�
�
� Uncertainty as a Function of World Size

Another phenomenon of interest is that as the world size increases� the variation

in the exponents as calculated by subsampling decreases� The standard deviations

in �gure ��� are the estimated uncertainty of the measurements as calculated by the

standard deviation of exponents for ��� bootstrap samples of 	�� runs �except for

the ��	�x��	� size� which are � bootstrap samples of ��� runs��

Again� the indication is that calculations on larger worlds can only be better�

Unfortunately� larger worlds also require more computational time� and so there is

a time�accuracy tradeo
� For most rules� size 	�x	� seems to be a reasonable
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Figure ��� Histogram of energies for Rule ��	��� 	�x	�� at time �� million

compromise between accuracy and computation time� it should provide a useful

estimate of the exponent and yet still be small enough that any one trial can be

calculated in a few hours�

�
�
�
� Artifacts Caused by Finite Size E�ects

The other �nite size e
ect that must be compensated for are behaviors introduced

by the �nite size world that would not be present in an in�nite world� Figure ��� a

histogram of energy at the end of a run of Rule ��	�� �an Ising�like rule with four

ground states instead of two� indicates an artifact of this sort� The distribution has

two large spikes� one at energy �	� one at energy ��	��

These artifacts correspond to a four�state version of a phenomenon also observed

in the two�state Ising model � it is possible for the �nite system to become stuck

in a con�guration where a large region of one type wraps around and connects to

itself� creating two permanent boundaries �see chapter �� As this structure depends

on the topology of the toroidal world and is not possible in the in�nite version� runs

that end at energy �	 or energy ��	� are �nite size e
ects and will be discarded�

Other rules might have other �nite size artifacts that are not as easy to detect� none
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Figure ���� Calculated exponents for various rules

have been discovered yet�

Another aspect of �gure �� deserves comment � for both Rule ��	�� and Rule

��	�� there is a large concentration at energy � at the end of the run� But another

entire set of runs is still at quite high energy� around energy ��� in Figure ��� It is

not clear whether this bimodality is some other �nite size e
ect� or just an indication

that the low�end tail of the distribution is very long but is being collected at energy

�� In either case� this phenomenon will almost certainly resulted in an estimated

exponent that is too high�

��� Results

With the caveats about estimating the calculated exponents for the various rules�

it is now possible to assert some measurements for the actual exponents themselves�

Figure ��� presents the exponents calculated by �tting a straight line to a log�log

plot of the average energy of many trials� along with their standard deviations as

calculated by bootstrapping� There are less trials for Rule ��	�� and Rule ��	��

because it was necessary to throw out some data to account for the �nite size e
ects

mentioned above�

The calculated exponent for the Ising rule is �� below the expected value of

���	� whether this is a result of �nite size errors or general uncertainty is not clear�

Rule ��	�� seems to have an exponent exactly like Rule ��	��� this is not entirely

surprising as their dynamics are qualitatively similar �chapter ��

Rule ��	�� and Rule �	�� also have qualitatively similar dynamics� but dynam�

ics that are quite di
erent than the Ising�like Rule ��	�� and Rule ��	�� �chapter

�� It is clear from the results that Rule �	�� belongs to a di
erent universality
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class from the Ising rule� There is a suggestion that Rule �	�� is asymptotically

E � t����� although more analysis is obviously needed to verify this claim�

What is surprising is that the exponent for Rule ��	�� is so close to ���	�

the universality class of the standard Ising rule� A solution for this rule would be

particularly interesting� if its exponent is exactly � � ���	� then Rule ��	�� would

be an example where two largely unrelated models are in the same universality class�

��� Summary

Statistical simulation of the di
erent rules has various problems� uncertainties

and �nite size e
ects that obscure the  true� behavior of the rule� However� simu�

lation remains an e
ective and simple tool to estimate one global parameter� Sta�

tistical analysis has demonstrated that Rule ��	�� and Rule ��	�� are similar�

but quite di
erent from Rule �	��� It has also generated one hypothesis that is

surprising in light of the description of the analysis that will be presented in the

next chapter� that there might be some underlying connection between Rule ��	��

and the basic Ising model�



��



Chapter �

Description

Statistical analysis provides one sort of information about a rule � an estimate

of a global parameter that is a consequence of the local rules� Ideally� one could

develop an exact solution for that parameter for every 	x	 rule� to match the solution

of the Ising dynamics� A �rst step towards doing this is to develop an intuition

about how the various rules behave� The Ising rule was characterized in the �rst

chapter� the only ground states are solid �elds of � or �� and the boundaries between

homogeneous domains have high energy� Many of the other rules are very di
erent

than the Ising rule� but can also be described succinctly� Once one knows what to

look for� the qualitative behavior of any particular rule is evident after watching the

rule dynamics for a few minutes�

��� Defects

Running a rule on a random initial con�guration and watching the changing

lattice of �s and �s can be educational� but it can also be confusing� In particular�

two rules that are equivalent under some world transformation might yield world

dynamics that look quite di
erent � our eyes cannot easily recognize the equivalence

of con�gurations under some of the more complicated transformations�

It will frequently be useful to examine the behavior of the �hot spots� in the

world� those 	x	 neighborhoods which are disallowed by the rule and thus have

energy greater than �� These 	x	 blocks are defects in the world state � the

dynamical process attempts to eliminate them�

De�nition �
� Defects� A defect is a �x� neighborhood with energy � ��

By the de�nition of rule equivalence� if rule R is equivalent to rule R� under

a transformation T � then for a con�guration � and the con�guration �� � T ����
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HR��� � HR������ This equivalence is true not only for the world itself but for any

smaller sub�blocks of the world � including 	x	 defect blocks� Therefore� while the

transformations on the state of the world might not be obviously equivalent� the

behavior of defects will be exactly the same�

For example� Rule � ���C��� is equivalent to Rule �� ��S�� under TS� Under

Rule �� every S neighborhood is a defect� Consider the spin �ip on this example

con�guration�
� � � �
� � � �
� � � �
� � � �

��
� � � �
� � � �
� � � �
� � � �

By �ipping the cell in the center� upper left� the middle S defect is eliminated� but

a new S defect appears above it� in e
ect� the spin �ip moves the S defect up one

cell� The same spin �ip on the con�guration transformed by TS produces the exact

same defect motion for Rule ���

� � � �
� � � �
� � � �
� � � �

��
� � � �
� � � �
� � � �
� � � �

In Rule ��� C and � are both defects� The spin �ip makes the � defect disappear�

only to replace it by a C defect above it� Just as in Rule �� the spin �ip causes the

defect to move up one cell� In general� equivalent rules will have equivalent defect

structures and equivalent defect dynamics � this makes defects a convenient way

to characterize rules�

��� Characterization of the Parity Symmetric �x� Rules

What follows is a qualitative description of the behavior of the eight distinct

parity symmetric rules �those that are symmetric under T��� The descriptions pre�

sented here are derived largely from directly observing the dynamics of the rules� in

the next chapter� arguments will be developed for why these dynamics are implied

by the rules themselves� Most rules are accompanied by example pictures � in

these pictures� white and black square are states � and �� and grey is overlaid to

highlight defects�
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Figure ��� Rule � ���S���� time 	���� energy �

�
�
� Trivial Rules

As noted earlier� there are two rules that are absolutely trivial � Rule � and

Rule ��� Rule � allows all world con�gurations� and Rule �� disallows all world con�

�gurations� Their dynamics are uninteresting� for any con�guration� every possible

spin �ip has �H � �� and so the dynamical process is completely unstructured�

�
�
� Fast Rules

The second qualitative category of rule are those that converge to energy �

extremely quickly �Figure ���� Of the parity symmetric rules� there is only one

unique rule of this type � Rule �	��� the rule which either disallows C or ���

Under this rule defects in a random initial con�guration disappear very quickly and

the structure of the world cells changes rapidly and without any obvious order �other

than disallowing the one type of disallowed neighborhood�� It will be shown in the

next chapter that the speed of convergence is not surprising� as defects are very easy

to eliminate�

�
�
� Slow Rules

The remaining parity symmetric rules are more interesting� The next class� slow

rules� still go to energy � at temperature � but do so more slowly and with more

structure than the fast Rule �	��� Empirical evidence in the previous chapter
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Figure �	� Rule �� ����� time ����� energy 	�

demonstrated that all of these rules converge like E � t� for some � characteristic

to each rule�

�
�
�
� Ising�like Rules

The �rst type of slow rules are the most familiar� the Ising�type rules� There are

two of these in the parity symmetric set� Rule ��	�� is almost exactly the classical

Ising rule �with a slight wrinkle about the magnitude of EC� as mentioned in chapter

	�� For Rule �� ����� after a quick period of initial settling down the world separates

into clearly distinguishable blobs of �s and blobs of �s �Figure �	�� The interior

of these blobs has energy �� whereas the boundary between the two types is a solid

curve of defects� implying that the energy of the system is proportional to the length

of the boundaries� The equivalent Rule �� �C� has the exact same boundary types�

but the blobs of � and � are replaced by blobs of C in two di
erent phases�

Rule ��	�� is slightly more complicated � instead of two types of blobs� there

are four� Rule �� ��C�� allows solid �� �� and both phases of checkerboard �Figure

��� as well as the right�side �ipbook�� Rule �� �S� creates blobs that are horizontal

stripes in one of two phases� or vertical stripes in one of two phases� Again� the

boundaries between blob types are defects� but the boundaries are more complicated

because several di
erent blob types can intersect at a point�

In both Rule ��	�� and Rule ��	�� the defect motion is basically the same�

the defect boundaries are free to wiggle about� as long as the defect chain stays
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Figure ��� Rule �� ��C��� time ����� energy 	��

Figure ��� Finite size e
ect in Rule �� ����� time �	���� energy ��

connected� Because the length of the boundary is directly proportional to the energy�

the tendency is for the system to minimize the length of the boundary by gradually

shrinking a blob until it disappears in a sea of the other state�

As noted in the previous chapter� there is a signi�cant �nite size e
ect that was

seen as spikes in the energy histogram for Rule ��	�� at energy �	 and ��	��

The cause of this e
ect is quite visible when looking at the world con�gurations

themselves� Because the world is a torus� it is possible that at temperature � a

permanent defect structure can be created � a blob that reaches around the world

and connects with itself� making a strip �Figure ���� When this strip is present� the

minimum energy the rule can �nd involves a large defect structure� to eliminate it

would require going to a higher energy� This e
ect only occurs because the topology

of a torus is radically di
erent from an in�nite plane � in the in�nite sized Ising

model this e
ect never occurs�



��

Figure �� Rule �� ��S��� time ����� energy 	�

�
�
�
� Random Walk 	 Annihilation Rules

The other class of rules that converge slowly to energy � at temperature � are

markedly di
erent from the Ising rules� For both Rule �	�� and Rule ��	��� the

major defect structure are isolated defects that walk randomly about the world�

In both rules� isolated defects usually do not disappear� spin �ips cause the defect

to move around� not to be eliminated� However� when two defects collide in the

appropriate fashion they both disappear� annihilating each other and lowering the

energy of the world�

Annihilation seems to be the only way defects can be eliminated in Rule �	���

It appears that� for �nite worlds� defects in Rule �	�� come in pairs� in all runs the

energy is always even� Rule ��	�� occasionally has single defects that disappear�

this seems to be a secondary mechanism unrelated to the main phenomenon of

annihilating pairs�

The defects in Rule �	�� can move in both dimensions �Figure ��� Rule ��	��

has more complicated structure� defects are largely constrained to the boundaries

between regions �Figure ���� The shape of these regions is more complicated than

the Ising rule� in particular the formation and change in the boundaries is not

obvious�
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Figure ��� Rule �� ������� time ������ energy ��

Figure ��� Rule �� ��S��� time ������ energy �		

�
�
� Frustrated Rules

The last class of parity symmetric rules contains those that do not converge to

energy � at temperature �� Instead� these rules freeze at a high energy� Even though

the energy is not �� all possible transitions only raise the energy� and so the system

is stuck in a local energy minimum� These systems are said to be frustrated�

There are two distinct rules in the parity symmetric set that exhibit this be�

havior � Rule ��	�� and Rule ��	��� In both rules the major defect phenomena

is isolated defects located at corners of solid rectangles �Figure ��� as well as the

left�side �ipbook�� Unlike the randomly walking defect type systems� these isolated

defects are pinned� they can neither move nor be eliminated� An important sec�

ondary structure are pairs of overlapping defects � both rules allow these pairs to

travel in a random walk along one dimension�

Rules that freeze to positive energy at temperature � are very interesting� It
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is possible that a particular defect could be locally eliminated from the world if it

were possible to just temporarily raise the energy of the world slightly� to get over

an energy barrier that is preventing the system from relaxing to a lower energy at a

later time� At temperature � it is impossible to raise the energy� even temporarily�

but positive temperature models allow energy barriers to be surmounted�

A related work hypothesizes that under certain conditions� if the energy barrier

is a constant than it is still the case that E � t� �SHS�	�� If the energy barrier is

not a constant� but rather dependent on the size of the defect� then E � ln�t�� or

E � ln�t��� much slower convergence�

Unfortunately� studying positive temperature models is more complicated than

temperature �� Any transition is possible in the world� not just those that move

to equal or lower energies� It seems likely that all of the parity symmetric rules

have only constant energy barriers� but there is evidence �not presented here� that

indicates that at least one rule is E � ln�t�� contradicting the hypothesis in �SHS�	��

This avenue has not been further investigated�

��� Summary

The set of parity symmetric� rotationally symmetric 	x	 rules contains a range

of behaviors� One of the rules is almost trivial� having extremely fast dynamics and

little structure� The standard Ising dynamics� boundaries between regions� exists in

two forms� Two new interesting classes of behavior also occur� both marked by the

importance of single defects in the lattice� In one class the defects walk randomly

around the world and annihilate on collision� while in the other class the isolated

defects are frozen in� resulting overall in a frustrated world� What remains is to

explain why these phenomena are created by the various rules�
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Local Analysis

Each of the 	x	 rules de�nes a global dynamical process� Predicting rule behavior

is di�cult� for most rules� it is impossible to predict the state of any particular cell

without considering the state of the entire world� In general information about the

state of a particular cell can propagate arbitrary distances across the world� For

example� in Rule �	�� defects can randomly walk across the world an arbitrary

distance� Therefore any particular cell in the world could potentially be in�uenced

by any defect� given enough time�

Analysis of the 	x	 rules is di�cult because of the requirement of global infor�

mation� Studying the behavior of small local regions of the world is simpler than

studying the entire world� but one cannot expect to be able to generalize local

information to a complete solution of the global behavior�

This fact may seem somewhat surprising given that the probability of a particular

spin �ip event depends only on local information� and thus the rules governing the

dynamical process are locally de�ned� In fact� the locality of individual events can

be exploited to allow an analysis of the dynamics of local con�gurations to partially

explain the global dynamics of any particular rule�

Two di
erent analyses on small con�gurations will be considered as means to

understand what happens to an entire world under any particular rule� One method�

the �x� analysis� lists all possible �x� world con�gurations and considers the result

of �ipping the middle cell in each con�guration� thereby generating a list of possible

energy transitions that can be used to infer global behavior� The other method

presented� defect analysis� is an attempt to understand the defect phenomena that

are induced by a particular rule� Like the �x� analysis� defect analysis also builds

a list of possible con�gurations and considers the results of spin �ips in these local

environments� For defect analysis the con�gurations are chosen to be relevant to

particular defect structures� not energy changes�
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These two analyses will be applied to representative examples of the parity sym�

metric rules� to see how well they predict the global phenomena that the rule creates�

Both analyses produce a fairly detailed accounting of the isolated events possible in

the system� For the casual reader� the details of application may not be as inter�

esting as the evaluation of the results� what is signi�cant is the degree of success or

failure of local analysis to predict global behavior�

��� �x� Analysis

Individual events in the dynamical system are single spin �ips� successive spin

�ips in time produce the global behavior� But each spin �ip occurs only in a local

context� The probability of �ipping a particular cell depends only on the four

neighborhoods of which that cell is a member� and the energy change that results

from that spin �ip is localized to the four neighborhoods surrounding the �ipped cell

�chapter 	�� Therefore� the context for an event in the dynamical system is entirely

local� only the �x� block surrounding the �ipped cell� All changes in world energy

�H are the �H seen by �ipping the center cell in a �x� block� list all possible �H

on all �x� blocks� and one has a list of all possible energy changes for the entire

system�

Each cell in a �x� block is either a � or �� There are � cells� and so there are

	� � �	 possible �x� blocks to consider� Each of these blocks is the union of four

	x	 neighborhoods� each with energy in f�� �g� so every �x� blocks has energy in

the set f�� �� 	� �� �g� It is feasible to build a list of all �	 �x� blocks� total up the

change in energy that results from �ipping the center cell for each of those blocks�

and thereby produce an exact list of the possible energy transitions in the entire

system�

Furthermore� the number of di
erent �x� blocks to be considered can be made

smaller than �	� because of symmetries in the rules� there are an even smaller

number of truly di
erent blocks from the rule�s point of view� For example� all of

the rules considered here are rotationally symmetric� Therefore� �H for �ipping

the center cell of a particular �x� block will be the same as �H for �ipping the



��

center cell of any rotation of that �x� block� It is enough to examine the energy

transitions possible on one representative �x� block� the result will be the same for

its rotations�

In addition� if a rule is symmetric under a particular transformation T �T�� TC�

TS� or T��� then �H on a �x� block B will be the same as �H on the transformed

block T �B�� As with rotation� it is only necessary to count the energy transition on

a representative block � it will be the same for any of the transformations applied

to that block�

The set of operations on �x� blocks fR�rotation�� T�� TC� TS� T�g form an abelain

group of order �	 acting on worlds� R is an element of order four� and each of

the four transformations are elements of order two� For any particular rule� the

subgroup generated by rotation and the set of transformations for which that rule

is symmetric is the group of actions which apply to the rule� The action of that

subgroup on �x� blocks de�nes a set of equivalence classes� one �x� block from each

of the equivalence classes is representative of the energy changes possible in the

entire class of �x� blocks�

Burnside�s Lemma gives an easy way to explicitly count the number of equiva�

lence classes for any particular subgroup ��Rob����� Burnside�s Lemma states�

" classes �
�

jGj

X
��G

j�x���j

Applying this formula to �x� blocks under the groups generated by any particular

transformations is straightforward� For example� of the �	 �x� blocks there are

exactly ��� that are unique under rotation�

G � hRi � fe�R�RR�RRRg

j�x�e�j � �	

j�x�R�j � �

j�x�RR�j � �	

j�x�RRR�j � �
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" classes � �
jGj �j�x�e�j � j�x�R�j � j�x�RR�j � j�x�RRR�j�

� ��� ��	 � � � �	 � ��
� ���

Similar calculations �nd �� unique �x� blocks under hR�T�i� �� under hR�T�� TCi�

		 under hR�T�� TC� TSi� and �� under hR�T�� TC� TS� T�i�

Given a rule and the list of representative �x� blocks� examining all possible

energy changes on those �x� blocks is a simple matter of counting� For each rep�

resentative block� calculate the energy of the block before and after the �ip � the

resulting �H is one possible energy transition in the entire system� The count of

all �Hs is the count of all possible energy changes in the system�

��� Local Defect Analysis

One important local feature of the various rules are the defects� those neighbor�

hoods in the world that have positive energy� Many of the characterizations of the

various rules in the previous chapter were descriptions of how the defects behave�

what sorts of defects are possible� how those defects move� and how they are elimi�

nated� If one understands all possible defect actions in the system� one understands

the important dynamics of the system�

A �x� neighborhood does not include all of the context of an entire defect� For

example� isolated defects play a large role in many of the rules� Isolated defects are

a disallowed 	x	 neighborhood surrounded entirely by neighborhoods that are not

defects� These features are actually �x� blocks� the 	x	 neighborhood in the middle

and the surrounding cells� Therefore� to understand the phenomena associated with

isolated defects it is necessary to consider an environment larger than �x� blocks�

The wider environment that surrounds a particular defect phenomena is called a

defect structure� the results of spin �ips on defect structures can be counted much

as spin �ips in �x� blocks are counted�

In some rules defect structures span arbitrary distances� For example� Ising�

like rules have chains of defects� long boundaries with no limit on their size� It is

impossible to capture all arbitrary sized defect structures in any �xed�size window�
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therefore� it is not expected that a local analysis will explain all defect phenomena�

There is a limit on the power of local defect analysis� what is interesting is how

useful it can be� even given the limitations�

Isolated defects and small defect interactions play a signi�cant role most of the

rules� The local defect analysis presented here will be restricted to only a small set

of defect structures� those surrounding a particular cell� These structures are essen�

tially expansions of �x� blocks that also take into account the relevant environment

of the defect�

Any individual cell is a member of four neighborhoods� and therefore can be a

member of at most four defects� There are only a small number of di
erent defect

structures that are centered on one cell� These are�

One defect �
� � � �
� � � �
� � � �
� � � �

Two defects �overlap� �
� � � � �
� � � � �
� � � � �
� � � � �

Two defects �skew� �

� � � �
� � � � �
� � � � �
� � � � �
� � � �

Three defects �

� � � �
� � � � �
� � 
 � �
� � � � �
� � � � �

Four defects �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�Here� � refers to a cell that can be anything � it provides an environment for the

defect� Numbers �� 	� �� and � correspond to cells that are members of that many

defects��

For any particular rule� there are only a �nite number of these combinations

that are defects� For example� Rule � ���C��� has only one type of defect� S�

Therefore� all environments with one defect in the middle are rotations of single



	

defect environments with an S in its center� rotations of the small con�guration

� � � �
� � � �
� � � �
� � � �

All �x� con�gurations of this type have energy at least �� the defect in the

middle� If the energy of one of these �x� blocks is exactly �� then there is no other

overlapping defect in the block� the defect in the middle is isolated� The set of

con�gurations with an S in the middle with energy exactly � is exactly the set of

all possible isolated defects in Rule ��

Similarly� there are four possible overlapping S # S interactions�

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

However� Rule � is symmetric under T� and TC� All four of the two�defect environ�

ments are equivalent under some combination of these two transformations� so it is

only necessary to examine what happens to one of these defect structures�

For a particular rule there is only a small set of possible defect structures� for

Rule �� there is only one unique single defect structure and one unique structure

with two overlapping defects� For any particular defect structure� �lling in each

� with a � or � generates a list of all possible environments in which a particular

defect or defect interaction can occur� For example� there are �	 � cells in the one

defect structure� and therefore 	�� � ���� possible environments for a single defect�

Every �x� block surrounding a single defect is one of those ���� types�

Simply counting the number of possible defect structures with a particular energy

yields information about the possible defect structures in the system� For example�

the set of all one defect structures with energy one is the set of all isolated defects�

It will be shown that there are a signi�cant number of isolated defects in Rule �	���

but none in Rule ��	��� It was conjectured that isolated defects are the signi�cant

defect structure in Rule �	�� but not in Rule ��	��� counting the possible isolated

defects yields a proof that isolated defects are possible in Rule �	�� but not in Rule

��	���

Furthermore� as with the �x� analysis� it is possible to enumerate all possible

energy transitions on any particular defect structure� For every con�guration of a
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particular defect environment� simply �ip cells that are in the defect in the middle�

and count the results of each spin �ip� For example� enumerating the results of spin

�ips in single isolated defect structures counts which defect changes are possible

for single isolated defects� This analysis can be used to show that� for instance�

the defects in Rule �	�� can all move in some sort of random walk� while isolated

defects in Rule ��	�� are pinned� incapable of movement�

Counting what happens to single isolated defects is the simplest of the defect

analyses� Multiple defect interactions can also be analyzed by considering larger

structures � pairs of overlapping defects� two skewed defects� groups of three or

four� The method is the same� list all instances of a particular defect structure�

consider possible spin �ips for cells that are members of the defect structure� and

see what the resulting �Hs are� Analysis of defect�pair interactions will be used to

demonstrate the existence of defect pair annihilation in Rule �	��� and defect�triples

will be implicated in the motion of defect boundaries in Rule ��	���

It should be noted that while there is a �nite number of possible environments

for any particular defect� there are enough that counting by hand is infeasible� For

instance� the environment for a three�defect interaction contains �� � environment

cells� yielding 	�	 � ��� possible three�defect environments� This can be narrowed

down some by taking into account the symmetries in the rule �much as was done for

the �x� analysis�� but ultimately when counting the defect environments� the use

of a computer program is invaluable� Appendix C contains a brief discussion of the

software used to perform these analyses�

��� Local Analysis of Selected Rules

The analyses may be di�cult to understand in the abstract� hopefully� by their

application the method will become clearer� �x� analysis and local defect analysis

will be applied to several of the parity symmetric rules and the success of these

analyses to predict rule behavior will be evaluated� The casual reader who is un�

interested in detail is invited to concentrate on the concluding paragraph of each

section�
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�
�
� Fast Rules

As noted in the previous chapter� Rule �	�� has the fastest dynamics of any

of the nontrivial rule parity symmetric rules� In addition� it also has the simplest

dynamics � considering Rule �� ��SC��� for example� the only thing that is disal�

lowed is solid blocks� It will be shown that this condition is very easy to satisfy�

Rule �	�� is symmetric with respect to T� � therefore� when applying the �x�

analysis it is only necessary to consider the set of �� representative �x� blocks under

the group hR�T�i� The count of all possible energy transitions� as given by the �x�

analysis� is in table ����

�x� con�guration Number that move to energy E
Energy Number E � � E � � E � 	 E � � E � �

� � 	�
� �� �� �
	 � �
� � �
� � �

Table ���� �x� analysis for Rule �	��

Each row is a tally of the �x� blocks with a particular energy� The �Number�

column is a count of how many of the �� possible con�gurations have that particular

energy and the �E � ��� �E � ��� etc� columns list the number of �x� blocks that

go to the speci�ed energy when the center cell is �ipped�

Of the �� possible �x� con�gurations� fully � of them are already energy ��

already relaxed� A large proportion of �x� con�gurations are already allowed com�

pared to� say� the Ising rule� which allows only � out of �� �the solid block�� This

suggests that low energy con�gurations are common�

The count of transitions to particular energies reveals the possible �H in the

system� All �x� blocks with energy greater than one can move directly to energy ��

all � energy 	� the one energy �� and the one energy � �x� block all go to energy

� when the center cell is �ipped� �� of the �� energy � blocks also go directly to

energy �� The remaining � go to some other energy � con�guration�





The � energy � con�gurations that cannot be immediately resolved to energy

� represents defects that potentially cannot be eliminated� But maybe one cell in

the defect cannot be eliminated� but another can� Local defect analysis provides

exactly this sort of information�

In fact� all defects are locally removable� Of the 	�� � ���� possible one defect

environments� ���� of them have energy �� ���� isolated defects� Table ��	 lists

the results obtained by seeing what happens when trying to �ip each cell in every

isolated defect�

Going Number of structures with n moves
to energy n � � n � � n � 	 n � � n � �

� � 	� ��� ��� ���
� ��� ��� ��� 	� �

Table ��	� Single defect analysis for Rule �	��

In this table� the rows tally the number of con�gurations that can go to a par�

ticular energy� and the columns contain the number of con�gurations that go to

that energy in exactly n di
erent ways� Every single defect structure has � cells to

�ip� and thus a maximum of � possible transitions to the given energy� Transitions

to energy � are eliminations of the defect� Motion to energy � are cases where the

defect is not eliminated by the spin �ip� but moved�

Of the ���� isolated defects possible in Rule �� � con�guration has no transitions

that bring the defect structure to energy �� 	� con�gurations have only � transition

to energy �� ��� have 	 transitions to energy �� ��� have � transitions to energy ��

and ��� have � transitions to energy �� Therefore� of the ���� defects� all but one

have at least one cell that can be �ipped to bring the structure to energy ��

Furthermore� ��� of the ���� defect environments have � spin �ip that moves

the defect environment to another energy � con�guration� ��� of the defect envi�

ronments have 	 ways to go to another � defect con�guration� 	� have � ways� and

one has � ways� Many of the isolated defects can move�

There was only one defect that could not be directly eliminated� But this defect�
� � � �
� � � �
� � � �
� � � �
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actually has four di
erent ways that it can move to another energy � con�gura�

tion� Each of the new defect structures that are produced by spin �ips on the one

uneliminatable defect can be eliminated in one step�

�x� analysis on Rule �	�� demonstrates that most of the possible �x� blocks

can be turned into energy � in one spin �ips� A few energy � con�gurations might

not be able to move to energy � directly� Looking more closely� by using defect

analysis to examine the motions of isolated defects� all but � isolated defect can be

eliminated in one spin �ip� And that one con�guration has an elimination in two

spin �ips� In other words� every possible local neighborhood can go to energy �

in two spin �ips� The combination of �x� analysis and defect analysis has proven�

purely by counting local con�gurations� a global property of Rule �	��� that the

system always relaxed to energy ��

�
�
� Random Walk 	 Annihilation Rules

Most of the other parity symmetric rules do not behave as simply� Another major

class of rules identi�ed in the previous chapter were those whose defects behaved

as randomly walking� pairwise annihilating particles �Rule �	�� and Rule ��	����

Can local analyses account for the behavior seen in these rules�

Rule � ���C��� has only one type of defect� S� As noted in the previous chapter�

defects in Rule � appear to walk randomly about the lattice and annihilate in pairs�

If defects are randomly walking particles� then it must be the case that isolated

defects exist� they can never disappear by themselves� but they can always move

on the lattice� If pairs of defects annihilate� then there must be a way for a pair of

defects to be eliminated in one spin �ip�

The �x� analysis goes a long way towards con�rming the defect annihilation

hypothesis� Rule � is symmetric under T� and TC� yielding �� di
erent �x� blocks�

The �x� analysis in table ��� demonstrates that �H for this rule is always even

� the only possible reductions in energy are 	 to �� � to �� or � to �� Energy

� con�gurations can never be eliminated� defects cannot disappear by themselves�

However� many of the energy 	 con�gurations �� of �� have a single spin �ip to
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�x� con�guration Number that move to energy E
Energy Number E � � E � � E � 	 E � � E � �

� �� �
� �� �	
	 � � 	
� � �
� � �

Table ���� �x� analysis for Rule �	��

energy �� suggesting annihilation is possible� And almost all energy � con�gurations

have transitions to other energy � con�gurations� and indication that defect motion

is possible�

To understand the full story it is necessary to look at the more detailed defect

analysis� There is only one type of defect� S� Of the ���� possible single defects�

��� of these are isolated� Table ��� lists the results of spin �ips on single defects�

Going Number of structures with n moves
to energy n � � n � � n � 	 n � � n � �

� ���
� 	 �� 	�

Table ���� Single defect analysis for Rule �	��

As predicted by the �x� analysis� no isolated defect can be eliminated in a single

spin �ip �all ��� have no moves to energy ��� But all isolated defects can move

to other energy � con�gurations� most �	�� of them in four di
erent ways� These

motions all occur as the result of one spin �ip� a �ip that removes the defect in

the middle but creates a new defect nearby� defect motion� Local defect analysis

demonstrates that all isolated defects can move� What about pairwise annihilation�

There are two types of defect�pair interactions� overlapping and skew� There is

one unique type of overlapping S # S interaction�

� � � � �
� � � � �
� � � � �
� � � � �

Explicit counting of the 	�� � ����� con�gurations indicates that this defect

pair occurs in isolation in ���	 di
erent ways� Each of the two cells in the defect



�

overlap should be tested for a potential spin �ip� resulting in at most two possible

moves for a particular con�guration�

Going Number with n moves
to energy n � � n � � n � 	

� 	 	�� �	�
� ���	
	 �	� 	�� 	

Table ��� Two overlapping defect analysis for Rule �	��

Table �� demonstrates that in Rule �	�� there is no transition on pairs of

overlapping defects that goes to energy �� this is expected� for if there were a

transition from energy 	 to energy � then only one defect would be eliminated in

a pair� and that possibility has already been ruled out in the �x� analysis� All but

	 of the overlapping defect structures can go directly to energy � with one spin

�ip� an annihilation of both defects is common� Of those 	 con�gurations that

cannot be eliminated directly� all of them have a transition to some other two defect

con�guration� Speci�cally looking at the con�gurations after this transition �not

shown here� indicates that all of the defect pairs that cannot be eliminated in one

spin �ip can be eliminated in two� In most cases� when two defects meet they can

annihilate� In a few instances they cannot� but in those cases they can move to

another con�guration that does allow annihilation�

Overlapping defects are only one of the two types of two�defect interactions�

There are two distinct types of skew defects in Rule ��

� � � �
� � � � �
� � � � �
� � � � �
� � � �

and

� � � �
� � � � �
� � � � �
� � � � �
� � � �

Table ��� lists the transitions on the �rst type of skew defect� Every con�guration

moves from energy 	 to energy � when the the shared cell is �ipped� Complete

annihilation! However� table ��� shows that the other type of skew interaction is

markedly di
erent�

For the second type of skew interaction there is no possible annihilation � the

only transition is to another two defect con�guration� Therefore� while there is
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Going n moves
to energy n � � n � �

� ��
� ��
	 ��

Table ���� Two skewed defect �type �� analysis for Rule �	��

Going n moves
to energy n � � n � �

� ���
� ���
	 ���

Table ���� Two skewed defect �type 	� analysis for Rule �	��

evidence that many two defect interactions allow annihilations� in some cases they

do not�

Empirical evidence indicates that in Rule �	�� all defects are eventually re�

moved� The underlying dynamic seems to be that there are actually two di
erent

types of defect� types A and B� and the annihilation equation is A � B �� �� All

isolated overlapping interactions are of heterogeneous defects �type A and type B��

as are the �rst type of skew interaction� while the second type of skew are two de�

fects of the same type �A and A� which cannot be eliminated�� This phenomenon is

observable in local defect analysis� but has not been pursued further�

Another unexplained phenomenon of Rule �	�� is that defects seem to always

come in pairs �chapter �� The �x� analysis proved that if the energy is even� it

remains even� It appears that in a �nite world the presence of an isolated defect in

the world requires that another defect exist somewhere else in the world �probably

of the other type� if the two defect type hypothesis is true�� However� this sister

defect does not seem to have to occur within any �nite distance of the �rst defect�

In other words� �defects come in pairs� is a global property of the rule� not a local

one� Because the scope of this property is not limited to a local region� no evidence

can be found for it by counting local con�gurations�

Another interesting tangent is the possibility that there is enough information
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present in the defect analysis to o
er a close approximation of the dynamics of Rule

�	��� By examining the results of spin �ips on isolated defects� one can count

exactly in which direction a defect can walk� From this count one could model the

random walk that the defects perform� This information� coupled with the existing

solutions of systems of discrete randomly walking annihilating particles �SSB����

might be the path towards a complete solution to the dynamics of Rule �	���

The analysis for the other random walk � annihilation rule� Rule ��	��� follows

the same basic pattern but reveals a more complicated story� There are transitions

on the world that do not keep the energy of the world even� implying that some

defect elimination events are not mutual annihilation� Defects are able to move like

a random walk� but the random walk seems to be constrained to one�dimensional

boundaries between large regions� These boundaries are global structures� not visible

in the small contexts enumerated by local defect analysis�

Local analysis explains a considerable amount of the behavior of Rule �	���

�x� analysis demonstrates that the only energy reduction possible is annihilation of

pairs of defects� and defect analysis shows that all single defects can walk on the

lattice� One limitation of looking at local con�gurations has been demonstrated �

local analysis is powerless to explain the global property that in Rule �	��� defects

come in pairs� But overall� local analysis has accounted for many of the dynamics

of Rule �	���

�
�
� Frustrated Rules

The next major class of rules to be studied are Rule ��	�� and Rule ��	���

those parity symmetric rules under which random worlds do not relax to energy ��

It will be shown that for Rule ��	�� pinned defects �defects that can neither move

nor be eliminated� are implied by the rule itself� Results are similar for Rule ��	���

but are not presented here�

Rule �� ��SC�� has only two types of defects� � and �� The hypothesis from

the previous chapter was that this rule had pinned defects� and that these pinned

defects contributed to frustrated dynamics� There was also a secondary e
ect where
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pairs of defects travelled in some sort of random walk� Most of these phenomena

are evident in the �x� analysis�

�x� con�guration Number that move to energy E
Energy Number E � � E � � E � 	 E � � E � �

� �
� �
	 � �
� � �
� � �

Table ���� �x� analysis for Rule ��	��

Table ��� shows that �x� con�gurations with energy � or � cannot be changed

at all� if there are isolated defects� they will not be able to move� All of the energy

	 blocks do have possible transitions to other energy 	 con�gurations� and energy

� and energy � con�gurations provide the opportunity for some energy reduction�

Note that the only time a local region can go to energy � is when there are four

defects together around the central square � complete defect elimination seems

di�cult�

The �x� analysis only indicates that if there are isolated defects� then they

cannot move� A speci�c defect analysis on the various types of isolated defects

�table ��� shows that there are �� possible isolated defects� Of those ��� none of

them have possible spin �ips� Isolated defects cannot be changed by themselves�

without another defect�s in�uence� they are permanent features of the world�

Going Number of structures with n moves
to energy n � � n � � n � 	 n � � n � �

� ��
� ��

Table ���� Single defect analysis for Rule ��	��

Table ��� also demonstrates one weakness of the local defect analysis� Of the

���� potential isolated defects� only �� of those con�gurations are actually isolated

defects� all other assignments to the environment of the defect structure result in

other overlapping defects� The proportion of isolated defects is small enough that it
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raises the question as to whether isolated defects actually occur with a reasonable

probability� There is no way to estimate that probability from these tables � in

general� it will be a complicated function potentially requiring global information�

Observation of Rule ��	�� indicates that isolated defects are common� and local

analysis then demonstrates that isolated defects are pinned� but it cannot explain

why isolated defects are so common�

It was already determined by the �x� analysis that a pair of defects cannot be

eliminated� The more detailed defect analysis provides little other useful information

about defect pairs � isolated pairs of defects do exist� and when they do they can

always move to other defect pair con�gurations� When watching the rule run it

appears that the defect pairs are constrained to travelling in one dimension� This

e
ect should be visible by examining the speci�c transitions of overlapping defect

pairs� much like the speci�cs of the random walk in Rule �	�� is� in principal�

solvable by counting exactly what sort of motions are possible in each particular

environment�

For Rule ��	��� �x� analysis has demonstrated that transitions to lower en�

ergy are generally di�cult� Defect analysis shows that isolated defects are possible�

and that when they occur they are completely pinned� However� the proportion of

isolated defects is small enough to make one wonder how probable they are� Obser�

vation of the dynamics suggests that isolated defects are common� but local analysis

of Rule ��	�� seems unable to verify that conjecture�

�
�
� Ising�like Rules

The �nal class of rules in the parity symmetric systems are the �Ising�like� rules�

those where the defects are boundaries between homogeneous regions� Rule ��	��

is pretty much exactly the Ising rule� having two regions �solid � and solid � for

Rule ���� while Rule ��	�� behaves similarly but allows four types of regions�

not two� Local analysis is generally not useful on these types of rules because the

defect structures are potentially any size� not simple isolated single defects or pair

interactions�



��

However� the very fact that local structures are not the dominant behavior of the

rule is indicated by local analysis� In addition� some information about the possible

dynamics is available� Table ���� shows the �x� analysis on Rule �� �����

�x� con�guration Number that move to energy E
Energy Number E � � E � � E � 	 E � � E � �

� �
� �
	 �
� �� �
� � � � � �� 	�

Table ����� �x� analysis for Rule ��	��

There is only one type of �x� block that is energy �� blocks that are either solid �

or �� the expected ground states of the Ising rule� Energy � and energy 	 blocks are

uncommon� and when they occur they have no freedom to move� �x� blocks with

energy � can sometimes move� and �x� blocks with energy � have much freedom to

move� and can sometimes be eliminated�

The only time the energy of the world can be decreased under Rule �� is when

there are four defects together� One event that is typical for this sort of transition

is�
� � �
� � �
� � �

��
� � �
� � �
� � �

energy � energy 	

Flipping the center cell of the energy � con�guration lowers the con�guration to

energy 	�

Unfortunately� a more general defect analysis gives very little other useful in�

formation� Counting indicates that it is impossible to have isolated groups of �� 	�

or � defects� as expected� isolated defects are not a factor in the Ising rule� When

looking at all three and four defect interactions� not just isolated structures� one sees

evidence of the motion of defect boundaries� but the resulting counts are di�cult to

understand�

The major feature of the Ising rule is long chains of connected defects� the

boundaries between regions that are energy �� Because these regions are arbitrarily
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sized� they are not representable in the limited scope of local analysis� What can be

demonstrated is that isolated defects are not present and that certain transitions of

high energy regions are possible� indicating that the rule is probably not frustrated�

��� Summary

Analysis of spin �ips on �x� blocks and on local defect structures is a useful

tool for understanding many of the possible rules� Local regions are small enough

to permit an exhaustive counting and informative enough to capture signi�cant

features of the model�

Local analyses work best for those rules where the most important defect struc�

tures are local� in particular for all rules except the Ising�like rules� Simply looking

at �x� blocks and small defect structures predicts which rules result in processes that

converge to energy � quickly� which are frustrated by pinned defects� and which have

dynamics that appear to be random walks with annihilation�

However� local analysis is ultimately incomplete� It is most successful on rules

where all defect events are purely local� Rule �	�� and Rule �	�� in particular�

Even here the analysis is somewhat lacking� for example� the inability to verify the

�defects come in pairs� hypothesis for Rule �	��� For rules like the Ising rule where

the dominant defect structure is entirely non�local� local analysis can do little more

than demonstrate that global defect structures are signi�cant�

The interplay between local and global phenomena is ultimately what is inter�

esting in the 	x	 model� It is usually easier to focus on local aspects of a system�

small con�gurations are easier to understand and manipulate� And when the system

is de�ned by local rules� local analysis can be informative� But local information

can be incomplete� and ultimately may not explain an entire global process� What

is surprising is not that a local analysis may ultimately fail to capture every aspect

of a global process� but rather that it can be so useful in predicting many of the

phenomena evident in a global dynamical system�



Appendix A

Example of Rule ����� Dynamics

An example run of Rule ��	�� at size �	x�	� Frames move from left to right�

then top to bottom� Note that the system converges to energy �� solid black� in

����� time steps�

time�� time����� time�	��� time�����

time����� time���� time����� time�����

time����� time����� time������ time������

time��	��� time������ time������ time�����

time������ time������ time������ time������



��



Appendix B

Dictionary of Rules

A table of all �� rotationally symmetric rules� �Allowed� is a list of the neighbor�

hoods allowed by the rule� �Forbidden� are those neighborhoods that are forbidden�

The T�� TC� TS� and T� columns list which rule is equivalent to the listed rule under

that transform� an  s� means the rule is symmetric under a transformation� a blank

means the transform is not applicable� The equivalence classes for each transforma�

tion can be determined by reading down the column for that transformation�

Rule Allowed Forbidden T� TC TS T�
� ��SC�� s s s s
� �SC�� � �	
	 � SC�� � ��
� SC�� �� ��
� �� C�� S s s ��
 � C�� � S ��
� � C�� �S 	�
� C�� ��S 	
� ��S �� C s ��
� �S �� � C ��

�� � S �� � C 	�
�� S �� �� C �
�	 �� �� SC s ��
�� � �� � SC ��
�� � �� �SC 	�
� �� ��SC ��
�� ��SC � � 	
�� �SC � � � ��
�� � SC � � � s s s �
�� SC � �� � �
	� �� C � S � �
	� � C � � S � ��
		 � C � �S � s s �
	� C � ��S � �
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Rule Allowed Forbidden T� TC TS T�
	� ��S � C� ��
	 �S � � C� �	
	� � S � � C� s �
	� S � �� C� �
	� �� � SC� ��
	� � � � SC� ��
�� � � �SC� s 
�� � ��SC� �	
�	 ��SC� � �
�� �SC� � � s �
�� � SC� � � ��
� SC� �� � ��
�� �� C� S � 
�� � C� � S � s �	
�� � C� �S � 	�
�� C� ��S � �
�� ��S � C � �
�� �S � � C � s s �
�	 � S � � C � 	
�� S � �� C � �
�� �� � SC � ��
� � � � SC � s s s ��
�� � � �SC � 	�
�� � ��SC � ��
�� ��SC �� �
�� �SC � �� �
� � SC � �� ��
� SC �� �� s 	�
	 �� C S �� �
� � C � S �� ��
� � C �S �� 	�
 C ��S �� s ��
� ��S C�� ��
� �S � C�� ��
� � S � C�� 	�
� S �� C�� s s 		
�� �� SC�� �
�� � � SC�� ��
�	 � �SC�� ��
�� ��SC�� s s s s



Appendix C

Software Tools

A considerable portion of this work has relied on the aid of software developed

by the author� While the Ising model itself was intended to be solved analytically� it

lends itself naturally to computer simulation� For the more complicated 	x	 models

where analytic models are not immediately forthcoming� direct simulation remains

the easiest way to study the various rules� The results obtained by simulation will

hopefully develop the intuition necessary to aid analytic solutions�

In addition to simulating the model itself� other computer programs have been

useful in studying the symmetries in the rule table and in performing the local

analysis presented in chapter �� Most of this thesis was done in a constant state of

interaction with a computer � a particular rule was run� the behavior examined� an

analytic hypothesis formed� the hypothesis implemented in a program� the program

run� and the results checked against the hypothesis� This method proved to be

natural and powerful�

C�� relax

The simulation engine� relax� implements the Markov process described in chap�

ter 	� The program takes a particular rule and a particular initial con�guration

�usually a random world� and directly simulates the Markov process� the output is

the measured energy as a function of time�

The Markov process simulation is the simplest imaginable� At each time step�

a random cell in the world is chosen and the probability of �ipping that cell is

calculated �based on the local �H�� If a pseudorandom number uniformly chosen

from ��� �� is lower than the probability of the �ip� then the �ip is performed� This

process is iterated over as many time steps as needed �on the order of �� million

time steps for most rules on a 	�x	� world��
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If the goal of simulation is collecting lots of time series data� this algorithm is

unacceptably slow� Even with a highly optimized implementation it takes several

hours to do a typical �� million time step run on a regular UNIX workstation� For

all of the nontrivial rules� as the energy gets lower the time between spin �ip events

gets bigger � towards the end of a run there might be only one successful spin �ip

every million time steps� An alternate random process suggested in �SHS�	� and

�BH�	� simulates the expected time for spin �ips rather than the probability of spin

�ips� providing an enormous gain in speed� More serious statistical study of these

rules would bene�t greatly from this improved algorithm�

Fortunately� it is only necessary to run a rule for a few hundred thousand time

steps to develop a basic qualitative understand of how the rule works� To aid in

this sort of examination� relax provides a graphical display of the world changing in

time� The software makes it easy to see the defect motion itself by highlighting those

neighborhoods that are defects� The example pictures in chapter  are essentially

screen captures of the program�

The importance of watching the dynamical processes for understanding the phe�

nomena in the various rules cannot be overestimated� Many of the concepts that

are di�cult to describe become obvious with just a few minutes� demonstration�

C�� rot and printdict

Two small tools� rot and printdict� automate the process of dealing with

the rule table itself� rot simply takes the number of a rule and prints out its

representation as a �� bit string� one bit for each possible 	x	 neighborhood �in e
ect

translating rotationally symmetric rules into the generic 	x	 framework�� printdict

produces the dictionary in appendix B � for each rule it determines what the rule

 means� as well as the e
ect of various transformations on it�
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C�� �x�

The analysis on all �x� blocks presented in chapter � can just barely be performed

by hand � for the rules considered� there are at most �� cases to consider� However�

doing this analysis by hand is tedious and prone to error� The �x� program takes a

rule as input� calculates a list of all unique �x� blocks �up to the symmetries of that

rule�� considers the e
ect of �ipping the middle cell of each block� and then prints

out the possible energy changes�

Having this tool automated makes it trivial to test the e�cacy of the �x� anal�

ysis on arbitrary rules � the total count of all transitions for a particular rule is

available almost instantaneously� It is doubtful that the �x� analysis would have

been understood without the computer implementation�

C�� general

The local defect analysis from chapter � is considerably more di�cult to perform

than �x� analysis � for most rules many hundreds of thousands of cases have

to be considered� general �so named because it is general enough to work on

all local defect structures� takes a particular rule and defect structure as input�

generates a list of all possible environments for that defect� and counts the number

of environments that can move from energy E to energy E� in n di
erent ways�

This output is quite broad� capturing most information about the transitions

possible on that defect structure� Various speci�c backends extract particular in�

formation � a list of isolated defects� counts of transitions to lower energy� simple

counts of �H for that defect structure� etc�

Given the large number of cases considered� the need for a computer tool to

implement the local defect analysis is obvious� In addition� the process of developing

the tool itself was useful in understanding how the local defect analysis worked�

In this� as in most of the work� the development of the computer program was

coincident with the development of my understanding of the system�
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